Problem Statement:

Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1]and numbers[index2] where 1 <= index1 < index2 <= numbers.length. Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2. The tests are generated such that there is exactly one solution. You may not use the same element twice. Your solution must use only constant extra space.

Example 1:

Input: numbers = [2,7,11,15], target = 9 Output: [1,2] Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].

Example 2:

Input: numbers = [2,3,4], target = 6 Output: [1,3] Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].

Example 3:

Input: numbers = [-1,0], target = -1 Output: [1,2] Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].

Constraints:

  • 2 <= numbers.length <= 3 * 104
  • -1000 <= numbers[i] <= 1000
  • numbers is sorted in non-decreasing order.
  • -1000 <= target <= 1000
  • The tests are generated such that there is exactly one solution.

Solution:

1. Two Pointers:
class Solution {
    public int[] twoSum(int[] nums, int target) {
        
        int left = 0;
        int right = nums.length - 1;
 
        while(left < right){
            if(nums[left] + nums[right] == target){
                return new int[]{left + 1, right + 1};
            } else if(nums[left] + nums[right] > target){
                right--;
            } else{
                left++;
            }
        }
        return new int[]{0, 0};
    }
}