Problem Statement:
You are climbing a staircase. It takes n
 steps to reach the top.
Each time you can either climb 1
 or 2
 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2 Output: 2 Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Example 2:
Input: n = 3 Output: 3 Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
Constraints:
1 <= n <= 45
Solution:
1. Recursion and memoization:
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
//dp[i] represents the total ways to reach the i'th step.
Arrays.fill(dp, -1);
return climbStairsUtil(n, dp);
}
public int climbStairsUtil(int n, int[] dp) {
if(n == 1 || n == 2 || n == 0){
return n;
}
if(dp[n] != -1){
return dp[n];
}
return dp[n] = climbStairsUtil(n-1, dp) + climbStairsUtil(n-2, dp);
}
}
2. Tabulation:
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 0; //There're no ways to reach to 0th step from 0th step because we're already there.
dp[1] = 1;
for(int i = 2; i <= n; i++){
if(i == 2){
dp[i] = 1 + dp[i - 1];
}
if(i > 2){
dp[i] = dp[i - 1] + dp[i - 2];
}
}
return dp[n];
}
}
3. Space optimized:
class Solution {
public int climbStairs(int n) {
// Special cases for small values of n
if (n <= 1) {
return 1;
}
// Variables to store the number of ways to reach the previous step and the step before the previous step
int twoStepsBefore = 0;
int oneStepBefore = 1;
// Iterate from the second step to the nth step
for (int step = 2; step <= n; step++) {
int currentWays = 0;
if (step == 2) {
// Special case for the second step
currentWays = 1 + oneStepBefore;
} else {
// General case for steps greater than 2
currentWays = oneStepBefore + twoStepsBefore;
}
// Update the steps for the next iteration
twoStepsBefore = oneStepBefore;
oneStepBefore = currentWays;
}
return oneStepBefore;
}
}