Problem Statement:
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node’s values in the path.
Given the root
 of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3] Output: 6 Explanation: The optimal path is 2 → 1 → 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7] Output: 42 Explanation: The optimal path is 15 → 20 → 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
- The number of nodes in the tree is in the rangeÂ
[1, 3 * 104]
. -1000 <= Node.val <= 1000
Solution:
class Solution {
// Main method to find the maximum path sum
public int maxPathSum(TreeNode root) {
int[] maxSum = {Integer.MIN_VALUE};
maxPathSum(root, maxSum);
return maxSum[0];
}
private int maxPathSum(TreeNode root, int[] maxSum) {
if (root == null) {
return 0;
}
// Recursively get the maximum path sums for the left and right subtrees
// Only consider positive sums, as negative sums would decrease the overall sum
int leftSum = Math.max(0, maxPathSum(root.left, maxSum));
int rightSum = Math.max(0, maxPathSum(root.right, maxSum));
// Calculate the maximum path sum for the current node
// Option 1: Only the current node's value
// Option 2: Current node's value plus the maximum of left or right subtree sums
int temp = Math.max(root.val, root.val + Math.max(leftSum, rightSum));
// Calculate the maximum path sum including both left and right subtrees
// Option 3: Current node's value plus both left and right subtree sums
int ans = Math.max(temp, root.val + leftSum + rightSum);
// Update the global maximum path sum if the current path sum is greater
maxSum[0] = Math.max(maxSum[0], ans);
// Return the maximum path sum that can be extended to the parent node
return temp;
}
}